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1. INTRODUCTION

Norman Levine [7] introduced the concepts of generalized closed sets in topological spaces. Later in 1996, Andrjivic [2]
gave a new type of generalized closed set in topological space called b closed sets. A.A.Omari and M.S.M. Noorani[1]
made an analytical study and gave the concepts of generalized b closed sets in topological spaces. The notion of regular
generalized star b-closed set and its different characterizations are discussed in [ 9].

Nakaoka and Oda[ 4,5,6] have introduced minimal open sets and maximal open sets, which are subclasses of open sets.
Later on many authors concentrated in this direction and defined many different types of minimal and maximal open sets.
Inspired with these developments we further study a new type of closed and open sets hamely minimal rg*b -closed sets,
maximal rg*b -open sets, minimal rg*b -open sets and maximal rg*b -closed sets.

Throughout the paper a space X means a topological space (X, t). The class of rg*b -closed sets is denoted by
RG*BC(X). For any subset A of X its complement, interior, closure, rg*b -interior, rg*b -closure are denoted respectively
by the symbols A, int A, cl(A), Int-rg*b(A), rg*b-cl(A).

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space (X,t),is called

1) a b-open set [4] if A < cl (int (A)) U int (cl (A)).

2) a regular open set [8] if A = int(cl (A)) and a regular closed set if A =cl(int(A)).

3) a regular generalized closed set (briefly, rg-closed)[8] if cl (A) € U whenever A € U and U
is regular open in X.

4) a generalized b- closed set (briefly gb- closed) [2] if bcl (A) € U whenever A € U and U
is open in X.

5) a regular generalized b-closed set (briefly rgb-closed) [3 ] if bcl(A) €U whenever A cU
and U is regular open in X.

6) a regular Generalized star b- closed set (briefly rg*b-closed set)[ 9] if bcl (A) € U
whenever A cU and U is rg-open in X.

Definition 2.2: Let A be a subset of a topological space (X,t).Then by [10]
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Q) A point XeA is the rg*b-interior point of A iff 3 GERG*BO(X, 1) such that xEGCA.

(ii) A point is said to be an rg*b-limit point of A iff for each UERG*BO(X), UN(A\{x}) # o.

(iii) A point XxeA is said to be rg*b-isolated point of A if 3 Ue RG*BO(X) such that UNA = {x}.

Definition 2.3: The set of all rg*b -interior points of A is called the rg*b -interior of A and is denoted by Int- rg*b (A).

Definition 2.4: Let A be a subset of a topological space (X,t). Then by [10]

Q) A is said to be rg*b-discrete if each point of A is rg*b-isolated point of A.
The set of all rg*b -isolated points of A is denoted by I (g« (A).

(i)  The intersection of all rg*b-closed sets containing A is called the rg*b-closure of A and is denoted by rg*b-cl(A).

(iii)  A\lInt-rg*b (A) is called the rg*b-border or rg*b-boundary of A, and is denoted by b g+, (A). That is, b (g~ (A) =
A\ Int- rg*b (A).

(iv)  The rg*b -interior of (X \ A) is called the rg*b -exterior of A, and is denoted by EXt (g, (A), that is, EXt g, (A) =
Int- rg*b (X \ A).

Theorem 2.5:

(i) Let AcYcX and Y is regularly open subspace of X then AERG*BO(Y, ©/Y) iff Y is rg*b -open in X.

(i)  LetYcSXand A is a rg*b -neighborhood of x in Y. Then A is rg*b -neighborhood of x in Y iff Y is rg*b -open in
X.

Remark 2.6: Finite union and finite intersection of rg*b -closed sets is not rg*b -closed in general.

Theorem 2.7: Let X = X;xX,. Let A; e RG*BC(Xy) and A, € RG*BC(X5) , then A;xA, e RG*BC(X1xXy).
3. MINIMAL RG*B -OPEN SETS AND MAXIMAL RG*B -CLOSED SETS

We now introduce minimal rg*b -open sets and maximal rg*b -closed sets in topological spaces as follows.

Definition 3.1: A proper nonempty rg*b -open subset U of X is said to be a Minimal rg*b -open set if any rg*b -open set
contained in U is ¢ or U.

Example 3.2: Let X = {a, b, ¢, d}; t = {o, {a}, {b,c}, {a, b,c}, X}. Then {a} is both Minimal open and Minimal rg*b -
open but {b} and {c} are Minimal rg*b -open but not Minimal open.

Remark 3.3: Minimal open and minimal rg*b -open sets are independent of each other:

Example 3.4: Let X = {a, b, ¢, d}; T = {9, {a, b}, X}. {a, b} is Minimal open but not Minimal rg*b -open and {a}, {b}
are Minimal rg*b -open but not Minimal open.

Theorem 3.5:

(i) Let U be a minimal rg*b -open set and W be a rg*b -open set. Then U N W = ¢ or UCW.
(if)Let U and V be minimal rg*b -open sets. ThenUN V=@ orU=V.

Proof:

(i) Let U be a minimal rg*b -open set and W be a rg*b -open set. If U N W = ¢, then there is nothing to prove. If U N W #
¢. Then U NW cU. Since U is a minimal rg*b -open set, we have U N W = U. Therefore U cW.
(if) Let U and V be minimal rg*b -open sets. If UNV # ¢, then Uc V and Vc U by (i). Therefore U = V.

Theorem 3.6: Let U be a minimal rg*b -open set. If xeU, then UcW for any regular open neighborhood W of x.

Proof: Let U be a minimal rg*b -open set and x be an element of U. Suppose 3 a regular open neighborhood W of x such
that U ¢ W. Then U N W is a rg*b -open set such that U N Wc U and U N W # ¢. Since U is a minimal rg*b -open set,
we have UN W = U. That is U cW, which is a contradiction for U ¢ W. Therefore Uc W for any regular open
neighborhood W of x.

Theorem 3.7: Let U be a minimal rg*b -open set. If xeU, then UcW for some rg*b -open set W containing x.
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Theorem 3.8: Let U be a minimal rg*b -open set. Then U = N{W: WERG*BO(X, x)} for any element x of U.
Proof: By theorem[3.7] and U is rg*b -open set containing X, we have UcN{ W: WeRG*BO(X, x)} cU.
Theorem 3.9: Let U be a nonempty rg*b -open set. Then the following three conditions are equivalent.

(i) U is a minimal rg*b -open set
(if) Uc rg*b-cl(S) for any nonempty subset S of U
(iii) rg*b-cl(U) = rg*b-cl(S) for any nonempty subset S of U.

Proof: (i) = (ii) Let x€U; U be minimal rg*b -open set and S(# ¢) cU. By theorem[3.7], for any rg*b -open set W
containing X, ScUcW = ScW. Now S = SNUcSNW. Since S# ¢, SNW # ¢. Since W is any rg*b -open set containing
X, X€ rg*b-cl(S). That is xeU = x€ rg*b-cl(S) = Uc rg*b-cl(S) for any nonempty subset S of U.

(ii) = (iii) Let S be a nonempty subset of U. That is ScU = rg*b-cl(S) < rg*b-cl(U) — (1). Again from (ii) Uc rg*b-
cl(S) for any S(# ¢) cU = rg*b-cl(U) < rg*b-cl(rg*b-cl(S)) = rg*b-cl (S). That is rg*b-cl(U) < rg*b-cl(S) — — (2). From
(1) and (2), we have rg*b-cl(U) = rg*b-cl(S) for any nonempty subset S of U.

(iii) = (i) From (3) we have rg*b-cl(U) = rg*b-cl(S) for any nonempty subset S of U. Suppose U is not a minimal rg*b -
open set. Then 3 a nonempty rg*b -open set V such that Vc U and V # U. Now 3 an element a in U such that a¢V =
aeV®. That is rg*b-cl({a})c rg*b-cl(V°) = V¢, as V°is rg*b -closed set in X. It follows that rg*b-cl({a}) # rg*h-cl(U).
This is a contradiction for rg*b-cl ({a}) = rg*b-cl(U) for any {a}(#$)cU. Therefore U is minimal rg*b open set.

Theorem 3.10: Let V be a nonempty finite rg*b -open set. Then 3 atlest one (finite) minimal rg*b open set U such that
UcV.

Proof: Let V be a nonempty finite rg*b -open set. If V is a minimal rg*b -open set, we may set U = V. If V is not a
minimal rg*b -open set, then 3 (finite) rg*b -open set V; such that ¢ # V,cV. If Vy is a minimal rg*b -open set, we may
set U = V. If V4 is not a minimal rg*b -open set, then 3 (finite) rg*b -open set V, such that ¢ # V, c V;. Continuing this
process, we have a sequence of rg*b -open setsV > V; 2V, D V3D ... DViD... Since V is a finite set, this process
repeats only finitely. Then finally we get a minimal rg*b -open set U = V,, for some positive integer n.

[A topological space X is said to be locally finite space if each of its elements is contained in a finite open set.]

Corollary 3.11: Let X be a locally finite space and V be a nonempty rg*b -open set. Then 3 at least one (finite) minimal
rg*b -open set U such that U c V.

Proof: Let X be a locally finite space and V be a nonempty rg*b -open set. Let x in V. Since X is locally finite space, we
have a finite open set V, such that x in V,. Then VNV, is a finite rg*b -open set. By Theorem 3.10 3 at least one (finite)
minimal rg*b -open set U such that U € VNV,. That is UcVNV,cV. Hence 3 at least one (finite) minimal rg*b -open set
U such that UcV.

Corollary 3.12: Let V be a finite minimal open set. Then 3 at least one (finite) minimal rg*b -open set U such that UcV.

Proof: Let V be a finite minimal open set. Then V is a nonempty finite rg*b -open set. By Theorem 3.10, 3 at least one
(finite) minimal rg*b -open set U such that UcV.

Theorem 3.13: Let U; U, be minimal rg*b -open sets for any element A€L". If UcU,erU;, then 3 an element A €I such
that U = U,.

Proof: Let U cU;erU,. Then U N(Uyerl;) = U. That is Uyer(U N U,) = U. Also by theorem[3.5] (ii)), U N Uy =¢ or U =
U, for any A€T. It follows that 3 an element AEI" such that U = U,

Theorem 3.14: Let U; U, be minimal rg*b -open sets for any A€T". If U = U,, for any A€, then (UyerU;) N U = o.

Proof: Suppose that (UyerU;) N U# @. That is U;er(U;, N U) # @. Then 3 an element AED such that U N U, # ¢. By
theorem 3.5(ii), we have U = U,, which contradicts the fact that U # U, for any A€I". Hence (UerU;)NU = o.

We now introduce Maximal rg*b -closed sets in topological spaces as follows.

Definition 3.15: A proper nonempty rg*b -closed FcX is said to be maximal rg*b -closed set if any rg*b -closed set
containing F is either X or F.
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Example 3.16: In Example 3.2, {b, c, d} is both Maximal closed and Maximal rg*b -closed but {a, b, c} and {a, b, d} are
Maximal rg*b -closed but not Maximal closed.

Remark 3.17: Maximal closed and maximal rg*b -closed sets are independent of each other:

Example 3.18: In Example 3.4, {c} is Maximal closed but not Maximal rg*b -closed and {a, c} and {b,c} are Maximal
rg*b -closed but not Maximal closed.

Remark 3.19: From the known results and by the above example we have the following implications:
Theorem 3.20: A proper nonempty subset F of X is maximal rg*b -closed set iff X-F is a minimal rg*b -open set.

Proof: Let F be a maximal rg*b -closed set. Suppose X-F is not a minimal rg*b -open set. Then 3 rg*b -open set U # X-F
such that ¢ # U < X-F. That is F ¢ X-U and X-U is a rg*b -closed set which is a contradiction for F is a maximal rg*b -
closed set.

Conversely let X-F be a minimal rg*b -open set. . Suppose F is not a maximal rg*b —closed set, then 3 rg*b closed set
E#F such that F cE # X. That is ¢ # X-E c X-F and X-E is a rg*b -open set which is a contradiction for X-F is a minimal
rg*b -open set. Therefore F is a maximal rg*b -closed set.

Theorem 3.21:

(i) Let F be a maximal rg*b -closed set and W be a rg*b -closed set. Then FUW = X or WcF.
(ii) Let F and S be maximal rg*b -closed sets. ThenFu S=Xor F=S.

Proof: (i) Let F be a maximal rg*b -closed set and W be a rg*b -closed set. If FU W = X, then there is nothing to prove.
Suppose F U W #X. Then F cF U W. Therefore FUW = F = WcF.

(ii) Let F and S be maximal rg*b -closed sets. If FUS # X, then we have FcS and ScF by (i). Therefore F = S.

Theorem 3.22: Let F be a maximal rg*b -closed set. If x is an element of F, then for any rg*b -closed set S containing X, F
uS=XorScF.

Proof: Let F be a maximal rg*b -closed set and x is an element of F. Suppose 3 rg*b -closed set S containing x such that
FUS#X. Then Fc FU Sand let FuU S isarg*b -closed set. Since F is a rg*b -closed set, we have F U S = F. Therefore
Sc F.

Theorem 3.23: Let F,, Fg, Fs be maximal rg*b -closed sets such that F, # Fp. If F, N Fg cF;, then either F, = Fsor Fy = F;5
Proof: Given that F, N Fg cF;. If F, = F; then there is nothing to prove.

If F, # Fs then we have to prove Fg = F; . Now Fg N F; = Fg N (Fs N X) =F N (F5 N (F, U Fg)(by thm. 3.21 (ii)) = Fg N
((Fs NFy) U (Fs N Fp)) =(Fg N Fs N F,) U (Fg N Fs N Fp)

= (Fo N Fg) U (Fs N Fp) (by F, N Fg cF5) = (F, U F5) N Fg = X N Fp (Since F, and F; are maximal rg*b -closed sets by
theorem[3.21](ii), F, U Fs = X) = Fg. That is Fg N Fs = Fg = Fg cF; Since Fg and Fs are maximal rg*b -closed sets, we
have Fg = Fs Therefore Fg = F;s

Theorem 3.24: Let F,, Fg and F; be different maximal rg*b -closed sets to each other. Then (F, N Fg) & (F, N Fy).

Proof: Let (F, N Fg) © (Fy N Fs) = (F, N Fp) U (Fs N Fy) < (Fy N Fs) U (Fs N Fy) = (F, U Fs) N Fy ©F5 N (Fy U Fp).
Since by theorem 3.21(ii), F, U F; = Xand F, U Fg = X = X N Fy cF; N X = Fg cF; From the definition of maximal
rg*b -closed set it follows that Fgz = F5, which is a contradiction to the fact that F,, Fg and F; are different to each other.
Therefore (F, N Fp) & (F, N Fp).

Theorem 3.25: Let F be a maximal rg*b -closed set and x be an element of F. Then F = U { S: S is a rg*b -closed set
containing x such that F U S # X}.

Proof: By theorem 3.23 and fact that F is a rg*b -closed set containing x, we have Fcu{ S: S is a rg*b -closed set
containing x such that F U S # X} — F. Therefore we have the result.

Theorem 3.26: Let F be a proper nonempty cofinite rg*b -closed set. Then 3 (cofinite) maximal rg*b -closed set E such
that Fc E.
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Proof: If F is maximal rg*b -closed set, we may set E = F. If F is not a maximal rg*b -closed set, then 3 (cofinite) rg*b -
closed set F; such that FcF; # X. If F; is a maximal rg*b -closed set, we may set E = F,. If F; is not a maximal rg*b -
closed set, then 3 a (cofinite) rg*b -closed set F, such that FcF,cF, # X. Continuing this process, we have a sequence of
rg*b closed, F cF,cF,c- - -cFy- - - - - .Since F is a cofinite set ,this process repeats only finitely. Then, finally we get a
maximal rg*b -closed set E = E,, for some positive integer n.

Theorem 3.27: Let F be a maximal rg*b -closed set. If x is an element of X-F. Then X-Fc E for any rg*b -closed set E
containing x.

Proof: Let F be a maximal rg*b -closed set and x in X-F. E & F for any rg*b -closed set E containing x. Then E U F = X
by theorem 3.21(ii). Therefore X-F cE.

4. MINIMAL RG*B -CLOSED SET AND MAXIMAL RG*B -OPEN SET

We now introduce Minimal rg*b -closed sets and Maximal rg*b -open sets in topological spaces as follows.

Definition 4.1: A proper nonempty rg*b -closed subset F of X is said to be a Minimal rg*b -closed set if any rg*b -
closed set contained in F is ¢ or F.

Example 4.2: In Example 3.2, {d} is both a Minimal closed and Minimal rg*b -closed set.
Remark 4.3: Minimal closed and minimal rg*b -closed sets are independent to each other:

Example 4.4: In Example 3.4, {c} is Minimal closed but not Minimal rg*b -closed set and {a} and {b} are Minimal rg*b
-closed but not Minimal closed.

Definition 4.5: A proper nonempty rg*b -open UcX is said to be a Maximal rg*b -open set if any rg*b -open set
containing U is either X or U.

Example 4.6: In Example 3.4, {a,b} is both maximal open and maximal rg*b open.
Remark 4.7: Maximal open set and maximal rg*b -open set are independent to each other.

Example 4. 8: In Example 3.2. {a, b,c} is Maximal open but not maximal rg*b -open and {a, b, d} and {a, c, d} are
Maximal rg*b -open but not maximal open.

Theorem 4.9: A proper nonempty subset U of X is maximal rg*b -open set iff X-U is a minimal rg*b -closed set.

Proof: Let U be a maximal rg*b -open set. Suppose X-U is not a minimal rg*b -closed set. Then 3 rg*b -closed set V #
X-U such that ¢ # V cX-U. That is UcX-V and X-V is a rg*b -open set which is a contradiction for U is a minimal rg*b
-closed set. Conversely let X-U be a minimal rg*b -closed set. Suppose U is not a maximal rg*b -open set. Then 3 a rg*b
-open set E # U such that Uc E # X. That is ¢ # X-E cX-U and X-E is a rg*b -closed set which is a contradiction for X-
U is a minimal rg*b -closed set. Therefore U is a maximal rg*b -closed set.

Lemma 4.10:

(i) Let U be a minimal rg*b -closed set and W be a rg*b - closed set. Then U N W=¢@ or U c W.
(ii) Let U and V be minimal rg*b - closed sets. Then UN V=@ or U= V.

Proof:

(i) Let U be a minimal rg*b -closed set and W be a rg*b -closed set. If U N W = @, then there is nothing to prove.
If U N W #¢. Then U NW cU. Since U is a minimal rg*b -closed set, we have U N W = U. Therefore U cW.
(ii) Let U and V be minimal rg*b -closed sets. If UNV # ¢, then UcV and Vc U by (i). Therefore U = V.

Theorem 4.11: Let U be a minimal rg*b -closed set. If xe U, then UcW for any regular open neighborhood W of x.

Proof: Let U be a minimal rg*b -closed set and x be an element of U. Suppose 3 an regular open neighborhood W of x
such that U ¢ W. Then U N W is a rg*b -closed set such that U N Wc U and U N W # ¢. Since U is a minimal rg*b -
closed set, we have UN W = U. That is U cW, which is a contradiction for U ¢ W. Therefore UcW for any regular open
neighborhood W of x.
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Theorem 4.12: Let U be a minimal rg*b -closed set. If xe U, then UcW for some rg*b-closed set W containing x.
Theorem 4.13: Let U be a minimal rg*b -closed set. Then U = N{ W: We RG*BC(X, x)}for any element x of U
Proof: By theorem[4.12] and U is rg*b -closed set containing x, we have UcN{ W: We RG*BC(X, x)} cU.
Theorem 4.14: Let U be a nonempty rg*b -closed set. Then the following three conditions are equivalent.

(i) U is a minimal rg*b -closed set
(ii) Uc rg*b-cl(S) for any nonempty subset S of U
(iii) rg*b-cl(U) =rg*b-cl(S) for any nonempty subset S of U.

Proof: (i) = (ii) Let x€ U; U be minimal rg*b -closed set and S(# ¢) cU. By theorem[4.12], for any rg*b -closed set W
containing X, ScUcW = ScW. Now S = SNUcCSNW. Since S# ¢, SNW # ¢. Since W is any rg*b -closed set containing
X, by theorem[4.12], xe rg*b-cl(S). That is xe U = x€ rg*b-cl(S) = U c rg*b-cl(S) for any nonempty subset S of U.

(i) = (iii) Let S be a nonempty subset of U. That is ScU = rg*b-cl(S) c rg*b-cl(U) — (1). Again from (ii) Uc rg*b-
cl(S) for any S(# ¢) cU = rg*b-cl(U) c rg*b-cl(rg*b-cl(S)) = rg*b-cl (S). That is rg*b-cl(U) < rg*b-cl(S) — (2). From
(1) and (2), we have rg*b-cl(U) = rg*b-cl(S) for any nonempty subset S of U.

(iii) = (i) From (3) we have rg*b-cl(U) = rg*b-cl(S) for any nonempty subset S of U. Suppose U is not a minimal rg*b -
closed set. Then 3 a nonempty rg*b -closed set V such that V cU and V # U. Now 3 an element a in U such that a¢ V =
a€e V°. That is rg*b-cl({a})c rg*b-cl(V°) = V¢, as V° is rg*b -closed set in X. It follows that rg*b-cl({a}) # rg*b-cl(U).
This is a contradiction for rg*b-cl({a}) = rg*b-cl(U) for any {a}(# ¢) cU. Therefore U is a minimal rg*b -closed set.

Theorem 4.15: Let V be a nonempty finite rg*b -closed set. Then 3 at least one (finite) minimal rg*b -closed set U such
that UcV.

Proof: Let V be a nonempty finite rg*b-closed set. If V is a minimal rg*b-closed set, we may set U = V. If V is not a
minimal rg*b -closed set, then 3 (finite) rg*b -closed set V; such that ¢ # V,cV. If V; is a minimal rg*b -closed set, we
may set U = V. If Vy is not a minimal rg*b -closed set, then 3 (finite) rg*b -closed set V, such that ¢ # V, € Vi.
Continuing this process, we have a sequence of rg*b -closed sets V o V1 5 V2 5 V3o ... D Vko ... Since Vis a
finite set, this process repeats only finitely. Then finally we get a minimal rg*b -closed set U = V, for some positive
integer n.

Corollary 4.16: Let X be a locally finite space and V be a honempty rg*b -closed set. Then 3 at least one (finite) minimal
rg*b -closed set U such that U cV.

Proof: Let X be a locally finite space and V be a nonempty rg*b -closed set. Let x in V. Since X is locally finite space, we
have a finite open set V, such that x in V. Then VNV, is a finite rg*b -closed set. By Theorem 4.15 3 at least one (finite)
minimal rg*b -closed set U such that Uc VNV,. That is UcVNV,cV. Hence 3 at least one (finite) minimal rg*b -closed
set U such that UcV.

Corollary 4.17: Let V be a finite minimal open set. Then 3 at least one (finite) minimal rg*b -closed set U such that
UcV.

Proof: Let V be a finite minimal open set. Then V is a nonempty finite rg*b -closed set. By Theorem 4.15, 3 at least one
(finite) minimal rg*b -closed set U such that UcV.

Theorem 4.18: Let U; U, be minimal rg*b -closed sets for any element A€ T". If UCU,crU,, then 3 an element A €T such
that U = U;L.

Proof: Let U cU;¢rU;. Then U N(U;¢rY;) = U. That is U,c(U N U,) = U. Also by lemma[4.10] (i), UN Uy =@ or U =
U, for any A€T. It follows that 3 an element A€ " such that U = U,,

Theorem 4.19: Let U; U, be minimal rg*b -closed sets for any A€ I'". If U = U, for any A€ T, then (U;crU;) N U =o.

Proof: Suppose that (U;erU;) N U# ¢. That is Uye(U, N U) # . Then 3 an element A€ T" such that U N U, # ¢. By
lemma[4.1](ii), we have U = U,, which contradicts the fact that U # U, for any A€ I". Hence (U;rU;)NU = .

Theorem 4.20: A proper nonempty subset F of X is maximal rg*b -open set iff X-F is a minimal rg*b -closed set.
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Proof: Let F be a maximal rg*b -open set. Suppose X-F is not a minimal rg*b -closed set. Then 3 rg*b -closed set U # X-
F such that ¢ # U cX-F. That is Fc X-U and X-U is a rg*b -open set which is a contradiction for F is a maximal rg*b -
open set.

Conversely let X-F be a minimal rg*b -closed set. Suppose F is not a maximal rg*b -open set. Then 3 rg*b -open set E #
F such that F c E # X. That is ¢ # X-Ec X-F and X-E is a rg*b -closed set which is a contradiction for X-F is a minimal
rg*b -closed set. Therefore F is a maximal rg*b -open set.

Theorem 4.21:

(i) Let F be a maximal rg*b -open set and W be a rg*b -open set. Then FUW = X or WcF.
(ii) Let F and S be maximal rg*b -open sets. ThenFuU S=XorF=S.

Proof: (i) Let F be a maximal rg*b -open set and W be a rg*b -open set. If FU W = X, then there is nothing to prove.
Suppose F U W #X. Then F cF U W. Therefore FUW = F = WcF.

(ii) Let F and S be maximal rg*b -open sets. If FUS # X, then we have FcS and ScF by (i). Therefore F = S.

Theorem 4.22: Let F be a maximal rg*b -open set. If X is an element of F, then for any rg*b -open set S containing x, F U
S=XorScF.

Proof: Let F be a maximal rg*b -open set and x is an element of F. Suppose 3 rg*b -open set S containing x such that F
U S#X.ThenFc FU Sand let FuU Sisarg*b -open set. Since F is a rg*b -open set, we have F U S = F. Therefore Sc
F.

Theorem 4.23: Let F,, Fg, Fs be maximal rg*b -open sets such that F, # F. If F, N Fgc Fs, then either F, = Fs or Fg=F;
Proof: Given that F, N Fg cF;. If F, = Fsthen there is nothing to prove.

If F, # Fs then we have to prove Fg = F5 . Now Fg N Fs = Fg N (Fs N X) =Fg N (Fs N (F, U Fg)(by thm. 4.21 (ii)) = Fg N
((FsNFy) U (Fs N Fg)) =(Fg N Fs NFy) U (FgN F5 N Fp)

= (Fa N Fp) U (Fs N Fp) (by F, N Fpc F5) = (F, U Fs) N Fg = X N Fp (Since F, and F; are maximal rg*b -open sets by
theorem[4.21](ii), F, U Fs = X) = F. That is Fg N F; = Fg = F cF; Since Fg and F; are maximal rg*b -open sets, we have
Fg = Fs Therefore Fg = F;

Theorem 4.24: Let F,, Fg and F; be different maximal rg*b -open sets to each other. Then (F, N Fp) & (F, N F5).

Proof: Let (F, N Fp) © (F, N Fs) = (F, N Fy) U (Fs N Fp) € (F, N Fs) U (Fs N Fy) = (Fy U Fs) N Fpge Fs N (F, U Fy).
Since by theorem 4.21(ii), F, w F; = X and F, U Fg = X = X N Fy cF; N X = Fg cF; From the definition of maximal
rg*b -open set it follows that Fg = F5, which is a contradiction to the fact that F,, Fg and F; are different to each other.
Therefore (F, N Fg) & (F, N Fy).

Theorem 4.25: Let F be a maximal rg*b -open set and x be an element of F. Then F = U { S: S is a rg*b -open set
containing x such that F U S # X}.

Proof: By theorem 4.23 and fact that F is a rg*b -open set containing x, we have Fc{ S: S is a rg*b -open set containing x
such that F U S # X} cF. Therefore we have the result.

Theorem 4.26: Let F be a proper nonempty cofinite rg*b -open set. Then 3 (cofinite) maximal rg*b -open set E such that
F cE.

Proof: If F is maximal rg*b -open set, we may set E = F. If F is not a maximal rg*b -open set, then 3 (cofinite) rg*b-open
set F; such that FcF; # X. If F; is a maximal rg*b -open set, we may set E = F;. If F; is not a maximal rg*b -open set,
then 3 a (cofinite) rg*b -open set F, such that FcF,;cF, # X. Continuing this process, we have a sequence of rg*b -open,
F cF,cF,c... FC... ... Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal rg*b -
open set E = E,, for some positive integer n.

Theorem 4.27: Let F be a maximal rg*b -open set. If x is an element of X-F. Then X-F cE for any rg*b -open set E
containing Xx.
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Proof: Let F be a maximal rg*b -open set and x in X-F. E ¢ F for any rg*b open set E containing x.Then EUF=X by
theorem 4.21(ii). Therefore X-Fc E.
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