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1. INTRODUCTION 

Norman Levine [7] introduced the concepts of generalized closed sets in topological spaces. Later in 1996, Andrjivic [2] 

gave a new type of generalized closed set in topological space called b closed sets. A.A.Omari and M.S.M. Noorani[1] 

made an analytical study and gave the concepts of generalized b closed sets in topological spaces. The notion of regular 

generalized star b-closed set and its different characterizations are discussed in [ 9]. 

Nakaoka and Oda[ 4,5,6] have introduced minimal open sets and maximal open sets, which are subclasses of open sets. 

Later on many authors concentrated in this direction and defined many different types of minimal and maximal open sets. 

Inspired with these developments we further study a new type of closed and open sets namely minimal rg*b -closed sets, 

maximal rg*b -open sets, minimal rg*b -open sets and maximal rg*b -closed sets.  

Throughout the paper a space X means a topological space (X, τ). The class of rg*b -closed sets is denoted by 

RG*BC(X). For any subset A of X its complement, interior, closure, rg*b -interior, rg*b -closure are denoted respectively 

by the symbols A
c
, int A, cl(A), Int-rg*b(A), rg*b-cl(A).  

2. PRELIMINARIES 

 Definition 2.1: A subset A of a topological space (X,τ ),is called 

1) a b-open set [4] if A ⊆ cl (int (A)) ∪  int (cl (A)). 

2) a regular open set [8] if A = int(cl (A)) and a regular closed set if     A = cl(int(A)). 

3) a  regular generalized closed set (briefly, rg-closed)[8] if cl (A) ⊆ U whenever A ⊆ U and U  

    is regular open in X. 

4) a generalized b- closed set (briefly gb- closed) [2] if bcl (A) ⊆ U whenever A ⊆ U and U  

    is open in X. 

5) a regular generalized b-closed set (briefly rgb-closed) [3 ] if bcl(A) ⊆U whenever A ⊆U  

    and U is regular open in X. 

6) a regular Generalized star  b- closed set (briefly rg*b-closed set)[ 9] if bcl (A) ⊆ U 

    whenever A ⊆U and U is rg-open in X. 

Definition 2.2: Let A be a subset of a topological space (X,τ).Then by [10] 
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(i) A point x∈A is the rg*b-interior point of A iff ∃ G∈RG*BO(X, τ) such that x∈G⊂A. 

(ii) A point is said to be an rg*b-limit point of A iff for each U∈RG*BO(X), U∩(A\{x}) ≠ φ.  

(iii) A point x∈A is said to be rg*b-isolated point of A if ∃ U∈ RG*BO(X) such that U∩A = {x}. 

Definition 2.3: The set of all rg*b -interior points of A is called the rg*b -interior of A and is denoted by Int- rg*b (A). 

Definition 2.4: Let A be a subset of a topological space (X,τ). Then by [10] 

(i) A is said to be rg*b-discrete if each point of A is rg*b-isolated point of A.  

           The set of all rg*b -isolated points of A is denoted by I rg*b(A).  

(ii) The intersection of all rg*b-closed sets containing A is called the rg*b-closure of A and is denoted by rg*b-cl(A).  

(iii) A \ Int- rg*b (A) is called the  rg*b-border or rg*b-boundary of A, and is denoted by b rg*b (A). That is, b rg*b (A) = 

A \ Int- rg*b (A). 

(iv) The rg*b -interior of (X \ A) is called the rg*b -exterior of A, and is denoted by Ext rg*b (A), that is, Ext rg*b (A) = 

Int- rg*b (X \ A). 

Theorem 2.5:  

(i) Let A⊆Y⊆X and Y is regularly open subspace of X then A∈RG*BO(Y, τ/Y) iff Y is rg*b -open in X . 

(ii) Let Y⊆X and A is a rg*b -neighborhood of x in Y. Then A is rg*b -neighborhood of x in Y iff Y is rg*b -open in 

X.  

Remark 2.6: Finite union and finite intersection of rg*b -closed sets is not rg*b -closed in general.  

Theorem 2.7: Let X = X1×X2. Let A1 RG*BC(X1) and A2 RG*BC(X2) , then A1×A2 RG*BC(X1×X2).  

3. MINIMAL RG*B -OPEN SETS AND MAXIMAL RG*B -CLOSED SETS 

We now introduce minimal rg*b -open sets and maximal rg*b -closed sets in topological spaces as follows.  

Definition 3.1: A proper nonempty rg*b -open subset U of X is said to be a Minimal rg*b -open set if any rg*b -open set 

contained in U is φ or U.  

Example 3.2: Let X = {a, b, c, d}; τ = {φ, {a}, {b,c}, {a, b,c}, X}. Then {a} is both Minimal open and Minimal rg*b -

open but {b} and {c} are Minimal rg*b -open but not Minimal open.  

Remark 3.3: Minimal open and minimal rg*b -open sets are independent of each other:  

Example 3.4: Let X = {a, b, c, d}; τ = {φ, {a, b},  X}. {a, b} is Minimal open but not Minimal rg*b -open and {a}, {b} 

are Minimal rg*b -open but not Minimal open.  

Theorem 3.5:  

(i) Let U be a minimal rg*b -open set and W be a rg*b -open set. Then U ∩ W = φ or U⊂W.  

(ii)Let U and V be minimal rg*b -open sets. Then U ∩ V = φ or U = V.  

Proof:  

(i) Let U be a minimal rg*b -open set and W be a rg*b -open set. If U ∩ W = φ, then there is nothing to prove. If U ∩ W ≠ 

φ. Then U ∩W ⊂U. Since U is a minimal rg*b -open set, we have U ∩ W = U. Therefore U ⊂W.  

(ii) Let U and V be minimal rg*b -open sets. If U∩V ≠ φ, then U⊂ V and V⊂ U by (i). Therefore U = V.  

Theorem 3.6: Let U be a minimal rg*b -open set. If x∈U, then U⊂W for any regular open neighborhood W of x.  

Proof: Let U be a minimal rg*b -open set and x be an element of U. Suppose ∃ a regular open neighborhood W of x such 

that U ⊄ W. Then U ∩ W is a rg*b -open set such that U ∩ W⊂ U and U ∩ W ≠ φ. Since U is a minimal rg*b -open set, 

we have U∩ W = U. That is U ⊂W, which is a contradiction for U ⊄ W. Therefore U⊂ W for any regular open 

neighborhood W of x.  

Theorem 3.7: Let U be a minimal rg*b -open set. If x∈U, then U⊂W for some rg*b -open set W containing x.  
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Theorem 3.8: Let U be a minimal rg*b -open set. Then U = ∩{W: W∈RG*BO(X, x)} for any element x of U.  

Proof: By theorem[3.7] and U is rg*b -open set containing x, we have U⊂∩{ W: W∈RG*BO(X, x)} ⊂U.  

Theorem 3.9: Let U be a nonempty rg*b -open set. Then the following three conditions are equivalent.  

(i) U is a minimal rg*b -open set  

(ii) U⊂ rg*b-cl(S) for any nonempty subset S of U  

(iii) rg*b-cl(U) = rg*b-cl(S) for any nonempty subset S of U.  

Proof: (i) ⇒ (ii) Let x∈U; U be minimal rg*b -open set and S(≠ φ) ⊂U. By theorem[3.7], for any rg*b -open set W 

containing x, S⊂U⊂W ⇒ S⊂W. Now S = S∩U⊂S∩W. Since S≠ φ, S∩W ≠ φ. Since W is any rg*b -open set containing 

x, x∈ rg*b-cl(S). That is x∈U ⇒ x∈ rg*b-cl(S) ⇒ U⊂ rg*b-cl(S) for any nonempty subset S of U.  

(ii) ⇒ (iii) Let S be a nonempty subset of U. That is S⊂U ⇒ rg*b-cl(S) ⊂ rg*b-cl(U) → (1). Again from (ii) U⊂ rg*b-

cl(S) for any S(≠ φ) ⊂U ⇒ rg*b-cl(U) ⊂ rg*b-cl(rg*b-cl(S)) = rg*b-cl (S). That is rg*b-cl(U) ⊂ rg*b-cl(S) – → (2). From 

(1) and (2), we have rg*b-cl(U) = rg*b-cl(S) for any nonempty subset S of U.  

(iii) ⇒ (i) From (3) we have rg*b-cl(U)  = rg*b-cl(S) for any nonempty subset S of U. Suppose U is not a minimal rg*b -

open set. Then ∃ a nonempty rg*b -open set V such that V⊂ U and V ≠ U. Now ∃ an element a in U such that a∉V ⇒ 

a∈V
c
. That is rg*b-cl({a})⊂ rg*b-cl(V

c
) = V

c
, as V

c 
is rg*b -closed set in X. It follows that rg*b-cl({a}) ≠ rg*b-cl(U). 

This is a contradiction for rg*b-cl ({a}) = rg*b-cl(U) for any {a}(≠)⊂U. Therefore U is minimal rg*b open set. 

Theorem 3.10: Let V be a nonempty finite rg*b -open set. Then ∃ atlest one (finite) minimal  rg*b open set U such that 

U⊂V. 

Proof: Let V be a nonempty finite rg*b -open set. If V is a minimal rg*b -open set, we may set U = V. If V is not a 

minimal rg*b -open set, then ∃ (finite) rg*b -open set V1 such that φ ≠ V1⊂V. If V1 is a minimal rg*b -open set, we may 

set U = V1. If V1 is not a minimal rg*b -open set, then ∃ (finite) rg*b -open set V2 such that φ ≠ V2 ⊂ V1. Continuing this 

process, we have a sequence of rg*b -open sets V ⊃ V1 ⊃ V2 ⊃ V3⊃ ..... ⊃ Vk ⊃ ...... Since V is a finite set, this process 

repeats only finitely. Then finally we get a minimal rg*b -open set U = Vn for some positive integer n. 

[A topological space X is said to be locally finite space if each of its elements is contained in a finite open set.] 

Corollary 3.11: Let X be a locally finite space and V be a nonempty rg*b -open set. Then ∃ at least one (finite) minimal 

rg*b -open set U such that U ⊂ V. 

Proof: Let X be a locally finite space and V be a nonempty rg*b -open set. Let x in V. Since X is locally finite space, we 

have a finite open set Vx such that x in Vx. Then V∩Vx is a finite rg*b -open set. By Theorem 3.10 ∃ at least one (finite) 

minimal rg*b -open set U such that U ⊂ V∩Vx. That is U⊂V∩Vx⊂V. Hence ∃ at least one (finite) minimal rg*b -open set 

U such that U⊂V. 

Corollary 3.12: Let V be a finite minimal open set. Then ∃ at least one (finite) minimal rg*b -open set U such that U⊂V. 

Proof: Let V be a finite minimal open set. Then V is a nonempty finite rg*b -open set. By Theorem 3.10, ∃ at least one 

(finite) minimal rg*b -open set U such that U⊂V. 

Theorem 3.13: Let U; Uλ be minimal rg*b -open sets for any element λ∈Γ. If U⊂∪λ∈ΓUλ, then ∃ an element λ ∈Γ such 

that U = Uλ. 

Proof: Let U ⊂∪λ∈ΓUλ. Then U ∩(∪λ∈ΓUλ) = U. That is ∪λ∈Γ(U ∩ Uλ) = U. Also by theorem[3.5] (ii), U ∩ Uλ = φ or U = 

Uλ for any λ∈Γ. It follows that ∃ an element λ∈Γ such that U = Uλ. 

Theorem 3.14: Let U; Uλ be minimal rg*b -open sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (∪λ∈ΓUλ) ∩ U = φ. 

Proof: Suppose that (∪λ∈ΓUλ) ∩ U≠ φ. That is ∪λ∈Γ(Uλ ∩ U) ≠ φ. Then ∃ an element λ∈Γ such that U ∩ Uλ ≠ φ. By 

theorem 3.5(ii), we have U = Uλ, which contradicts the fact that U ≠ Uλ for any λ∈Γ. Hence (∪λ∈ΓUλ)∩U = φ. 

We now introduce Maximal rg*b -closed sets in topological spaces as follows. 

Definition 3.15: A proper nonempty rg*b -closed F⊂X is said to be maximal rg*b -closed set if any rg*b -closed set 

containing F is either X or F. 
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Example 3.16: In Example 3.2, {b, c, d} is both Maximal closed and Maximal rg*b -closed but {a, b, c} and {a, b, d} are 

Maximal rg*b -closed but not Maximal closed. 

Remark 3.17: Maximal closed  and maximal rg*b -closed sets are independent of each other: 

Example 3.18: In Example 3.4, {c} is Maximal closed but not Maximal rg*b -closed and {a, c} and {b,c} are Maximal 

rg*b -closed but not Maximal closed. 

Remark 3.19: From the known results and by the above example we have the following implications: 

Theorem 3.20: A proper nonempty subset F of X is maximal rg*b -closed set iff X-F is a minimal rg*b -open set. 

Proof: Let F be a maximal rg*b -closed set. Suppose X-F is not a minimal rg*b -open set. Then ∃ rg*b -open set U ≠ X-F 

such that φ ≠ U ⊂ X-F. That is F ⊂ X-U and X-U is a rg*b -closed set which is a contradiction for F is a maximal rg*b -

closed set. 

Conversely let X-F be a minimal rg*b -open set. . Suppose F is not a maximal rg*b –closed set, then ∃ rg*b closed set 

E≠F such that F ⊂E ≠ X. That is φ ≠ X-E ⊂ X-F and X-E is a rg*b -open set which is a contradiction for X-F is a minimal 

rg*b -open set. Therefore F is a maximal rg*b -closed set.  

Theorem 3.21:  

(i) Let F be a maximal rg*b -closed set and W be a rg*b -closed set. Then F∪W = X or W⊂F.  

(ii) Let F and S be maximal rg*b -closed sets. Then F ∪ S = X or F = S.  

Proof: (i) Let F be a maximal rg*b -closed set and W be a rg*b -closed set. If F∪ W = X, then there is nothing to prove. 

Suppose F ∪ W ≠ X. Then F ⊂F ∪ W. Therefore F∪W = F ⇒ W⊂F.  

(ii) Let F and S be maximal rg*b -closed sets. If F∪S ≠ X, then we have F⊂S and S⊂F by (i). Therefore F = S.  

Theorem 3.22: Let F be a maximal rg*b -closed set. If x is an element of F, then for any rg*b -closed set S containing x, F 

∪ S = X or S ⊂F.  

Proof: Let F be a maximal rg*b -closed set and x is an element of F. Suppose ∃ rg*b -closed set S containing x such that 

F ∪ S ≠ X. Then F⊂ F ∪ S and let F ∪ S is a rg*b -closed set. Since F is a rg*b -closed set, we have F ∪ S = F. Therefore 

S⊂  F.  

Theorem 3.23: Let Fα, Fβ, Fδ be maximal rg*b -closed sets such that Fα ≠ Fβ. If Fα ∩ Fβ ⊂Fδ, then either Fα = Fδ or Fβ = Fδ  

Proof: Given that Fα ∩ Fβ ⊂Fδ. If Fα = Fδ then there is nothing to prove.  

If Fα ≠ Fδ then we have to prove Fβ = Fδ . Now Fβ ∩ Fδ = Fβ ∩ (Fδ ∩ X) = Fβ ∩ (Fδ ∩ (Fα ∪ Fβ)(by thm. 3.21 (ii)) = Fβ ∩ 

((Fδ ∩ Fα) ∪ (Fδ ∩ Fβ)) = (Fβ ∩ Fδ ∩ Fα) ∪ (Fβ ∩ Fδ ∩ Fβ)  

= (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (by Fα ∩ Fβ ⊂Fδ) = (Fα ∪ Fδ) ∩ Fβ = X ∩ Fβ (Since Fα and Fδ are maximal rg*b -closed sets by 

theorem[3.21](ii), Fα ∪ Fδ = X) = Fβ. That is Fβ ∩ Fδ = Fβ ⇒ Fβ ⊂Fδ Since Fβ and Fδ are maximal rg*b -closed sets, we 

have Fβ = Fδ Therefore Fβ = Fδ  

Theorem 3.24: Let Fα, Fβ and Fδ be different maximal rg*b -closed sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).  

Proof: Let (Fα ∩ Fβ) ⊂ (Fα ∩ Fδ) ⇒ (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) ⊂ (Fα ∩ Fδ) ∪ (Fδ ∩ Fβ) ⇒ (Fα ∪ Fδ) ∩ Fβ ⊂Fδ ∩ (Fα ∪ Fβ). 

Since by theorem 3.21(ii), Fα ∪ Fδ = X and Fα ∪ Fβ = X ⇒ X ∩ Fβ ⊂Fδ ∩ X ⇒ Fβ ⊂Fδ From the definition of maximal 

rg*b -closed set it follows that Fβ = Fδ, which is a contradiction to the fact that Fα, Fβ and Fδ are different to each other. 

Therefore (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).  

Theorem 3.25: Let F be a maximal rg*b -closed set and x be an element of F. Then F = ∪ { S: S is a rg*b -closed set 

containing x such that F ∪ S ≠ X}.  

Proof: By theorem 3.23 and fact that F is a rg*b -closed set containing x, we have F⊂∪{ S: S is a rg*b -closed set 

containing x such that F ∪ S ≠ X} – F. Therefore we have the result.  

Theorem 3.26: Let F be a proper nonempty cofinite rg*b -closed set. Then ∃ (cofinite) maximal rg*b -closed set E such 

that F⊂ E.  
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Proof: If F is maximal rg*b -closed set, we may set E = F. If F is not a maximal rg*b -closed set, then ∃ (cofinite) rg*b -

closed set F1 such that F⊂F1 ≠ X. If F1 is a maximal rg*b -closed set, we may set E = F1. If F1 is not a maximal rg*b -

closed set, then ∃ a (cofinite) rg*b -closed set F2 such that F⊂F1⊂F2 ≠ X. Continuing this process, we have a sequence of 

rg*b closed, F ⊂F1⊂F2⊂- - -⊂Fk - - - - - .Since F is a cofinite set ,this process repeats only finitely. Then, finally we get a 

maximal rg*b -closed set E = En for some positive integer n.  

Theorem 3.27: Let F be a maximal rg*b -closed set. If x is an element of X-F. Then X-F⊂ E for any rg*b -closed set E 

containing x.  

Proof: Let F be a maximal rg*b -closed set and x in X-F. E ⊄ F for any rg*b -closed set E containing x. Then E ∪ F = X 

by theorem 3.21(ii). Therefore X-F ⊂E.  

4. MINIMAL RG*B -CLOSED SET AND MAXIMAL RG*B -OPEN SET 

We now introduce Minimal rg*b -closed sets and Maximal rg*b -open sets in topological spaces as follows.  

Definition 4.1: A proper nonempty rg*b -closed subset F of X is said to be a Minimal rg*b -closed set if any rg*b -

closed set contained in F is φ or F.  

Example 4.2: In Example 3.2, {d} is both a Minimal closed and Minimal rg*b -closed set.  

Remark 4.3: Minimal closed and minimal rg*b -closed sets are independent to each other:  

Example 4.4: In Example 3.4, {c} is Minimal closed but not Minimal rg*b -closed set and {a} and {b} are Minimal rg*b 

-closed but not Minimal closed.  

Definition 4.5: A proper nonempty rg*b -open U⊂X is said to be a Maximal rg*b -open set if any rg*b -open set 

containing U is either X or U.  

Example 4.6: In Example 3.4, {a,b} is both maximal open and maximal rg*b open. 

Remark 4.7: Maximal open set and maximal rg*b -open set are independent to each other.  

Example 4. 8: In Example 3.2. {a, b,c} is Maximal open but not maximal rg*b -open and {a, b, d} and {a, c, d} are 

Maximal rg*b -open but not maximal open.  

Theorem 4.9: A proper nonempty subset U of X is maximal rg*b -open set iff X-U is a minimal rg*b -closed set.  

Proof: Let U be a maximal rg*b -open set. Suppose X-U is not a minimal rg*b -closed set. Then ∃ rg*b -closed set V ≠ 

X-U such that φ ≠ V ⊂X-U. That is U⊂X-V and X-V is a rg*b -open set which is a contradiction for U is a minimal rg*b 

-closed set. Conversely let X-U be a minimal rg*b -closed set. Suppose U is not a maximal rg*b -open set. Then ∃ a rg*b 

-open set E ≠ U such that U⊂ E ≠ X. That is φ ≠ X-E ⊂X-U and X-E is a rg*b -closed set which is a contradiction for X-

U is a minimal rg*b -closed set. Therefore U is a maximal rg*b -closed set.  

Lemma 4.10:  

(i) Let U be a minimal rg*b -closed set and W be a rg*b - closed set. Then U ∩ W = φ or U ⊂ W.  

(ii) Let U and V be minimal rg*b - closed sets. Then U ∩ V = φ or U = V.  

Proof:  

(i) Let U be a minimal rg*b -closed set and W be a rg*b -closed set. If U ∩ W = φ, then there is nothing to prove.  

If U ∩ W ≠ φ. Then U ∩W ⊂U. Since U is a minimal rg*b -closed set, we have U ∩ W = U. Therefore U ⊂W.  

(ii) Let U and V be minimal rg*b -closed sets. If U∩V ≠ φ, then U⊂V and V⊂ U by (i). Therefore U = V.  

Theorem 4.11: Let U be a minimal rg*b -closed set. If x∈U, then U⊂W for any regular open neighborhood W of x.  

Proof: Let U be a minimal rg*b -closed set and x be an element of U. Suppose ∃  an regular open neighborhood W of x 

such that U ⊄ W. Then U ∩ W is a rg*b -closed set such that U ∩ W⊂ U and U ∩ W ≠ φ. Since U is a minimal rg*b -

closed set, we have U∩ W = U. That is U ⊂W, which is a contradiction for U ⊄ W. Therefore U⊂W for any regular open 

neighborhood W of x.  
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Theorem 4.12: Let U be a minimal rg*b -closed set. If x∈U, then U⊂W for some rg*b-closed set W containing x. 

Theorem 4.13: Let U be a minimal rg*b -closed set. Then U = ∩{ W: W∈RG*BC(X, x)}for any element x of U 

Proof: By theorem[4.12] and U is rg*b -closed set containing x, we have U⊂∩{ W: W∈RG*BC(X, x)} ⊂U.  

Theorem 4.14: Let U be a nonempty rg*b -closed set. Then the following three conditions are equivalent.  

(i) U is a minimal rg*b -closed set  

(ii) U⊂ rg*b-cl(S) for any nonempty subset S of U  

(iii) rg*b-cl(U)  = rg*b-cl(S)  for any nonempty subset S of U.  

Proof: (i) ⇒ (ii) Let x∈U; U be minimal rg*b -closed set and S(≠ φ) ⊂U. By theorem[4.12], for any rg*b -closed set W 

containing x, S⊂U⊂W ⇒ S⊂W. Now S = S∩U⊂S∩W. Since S≠ φ, S∩W ≠ φ. Since W is any rg*b -closed set containing 

x, by theorem[4.12], x∈  rg*b-cl(S). That is x∈U ⇒ x∈  rg*b-cl(S)  ⇒ U ⊂ rg*b-cl(S) for any nonempty subset S of U.  

(ii) ⇒ (iii) Let S be a nonempty subset of U. That is S⊂U ⇒ rg*b-cl(S) ⊂ rg*b-cl(U)  → (1). Again from (ii) U⊂ rg*b-

cl(S) for any S(≠ φ) ⊂U ⇒ rg*b-cl(U) ⊂ rg*b-cl(rg*b-cl(S)) = rg*b-cl (S). That is rg*b-cl(U) ⊂ rg*b-cl(S)  → (2). From 

(1) and (2), we have rg*b-cl(U)  = rg*b-cl(S) for any nonempty subset S of U.  

(iii) ⇒ (i) From (3) we have rg*b-cl(U)  =  rg*b-cl(S) for any nonempty subset S of U. Suppose U is not a minimal rg*b -

closed set. Then ∃  a nonempty rg*b -closed set V such that V ⊂U and V ≠ U. Now ∃  an element a in U such that a∉V ⇒ 

a∈V
c
. That is rg*b-cl({a})⊂ rg*b-cl(V

c
) = V

c
, as V

c
 is rg*b -closed set in X. It follows that rg*b-cl({a}) ≠ rg*b-cl(U). 

This is a contradiction for rg*b-cl({a}) = rg*b-cl(U)  for any {a}(≠ φ) ⊂U. Therefore U is a minimal rg*b -closed set.  

Theorem 4.15: Let V be a nonempty finite rg*b -closed set. Then ∃  at least one (finite) minimal rg*b -closed set U such 

that U⊂V.  

Proof: Let V be a nonempty finite rg*b-closed set. If V is a minimal rg*b-closed set, we may set U = V. If V is not a 

minimal rg*b -closed set, then ∃  (finite) rg*b -closed set V1 such that φ ≠ V1⊂V. If V1 is a minimal rg*b -closed set, we 

may set U = V1. If V1 is not a minimal rg*b -closed set, then ∃  (finite) rg*b -closed set V2 such that φ ≠ V2 ⊂  V1. 

Continuing this process, we have a sequence of rg*b -closed sets V ⊃ V1 ⊃ V2 ⊃ V3⊃ ..... ⊃ Vk ⊃ ...... Since V is a 

finite set, this process repeats only finitely. Then finally we get a minimal rg*b -closed set U = Vn for some positive 

integer n.  

Corollary 4.16: Let X be a locally finite space and V be a nonempty rg*b -closed set. Then ∃  at least one (finite) minimal 

rg*b -closed set U such that U ⊂V.  

Proof: Let X be a locally finite space and V be a nonempty rg*b -closed set. Let x in V. Since X is locally finite space, we 

have a finite open set Vx such that x in Vx. Then V∩Vx is a finite rg*b -closed set. By Theorem 4.15 ∃  at least one (finite) 

minimal rg*b -closed set U such that U⊂ V∩Vx. That is U⊂V∩Vx⊂V. Hence ∃  at least one (finite) minimal rg*b -closed 

set U such that U⊂V.  

Corollary 4.17: Let V be a finite minimal open set. Then ∃  at least one (finite) minimal rg*b -closed set U such that 

U⊂V.  

Proof: Let V be a finite minimal open set. Then V is a nonempty finite rg*b -closed set. By Theorem 4.15, ∃  at least one 

(finite) minimal rg*b -closed set U such that U⊂V.  

Theorem 4.18: Let U; Uλ be minimal rg*b -closed sets for any element λ∈Γ. If U⊂∪ λ∈ΓUλ, then ∃  an element λ ∈Γ such 

that U = Uλ.  

Proof: Let U ⊂∪ λ∈ΓUλ. Then U ∩(∪ λ∈ΓUλ) = U. That is ∪ λ∈Γ(U ∩ Uλ) = U. Also by lemma[4.10] (ii), U ∩ Uλ = φ or U = 

Uλ for any λ∈Γ. It follows that ∃  an element λ∈Γ such that  U = Uλ 

Theorem 4.19: Let U; Uλ be minimal rg*b -closed sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (∪ λ∈ΓUλ) ∩ U = φ.  

Proof: Suppose that (∪ λ∈ΓUλ) ∩ U≠ φ. That is ∪ λ∈Γ(Uλ ∩ U) ≠ φ. Then ∃  an element λ∈Γ such that U ∩ Uλ ≠ φ. By 

lemma[4.1](ii), we have U = Uλ, which contradicts the fact that U ≠ Uλ for any λ∈Γ. Hence (∪ λ∈ΓUλ)∩U = φ.  

Theorem 4.20: A proper nonempty subset F of X is maximal rg*b -open set iff X-F is a minimal rg*b -closed set.  
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Proof: Let F be a maximal rg*b -open set. Suppose X-F is not a minimal rg*b -closed set. Then ∃  rg*b -closed set U ≠ X-

F such that φ ≠ U ⊂X-F. That is F⊂ X-U and X-U is a rg*b -open set which is a contradiction for F is a maximal rg*b -

open set.  

Conversely let X-F be a minimal rg*b -closed set. Suppose F is not a maximal rg*b -open set. Then ∃  rg*b -open set E ≠ 

F such that F ⊂ E ≠ X. That is φ ≠ X-E⊂ X-F and X-E is a rg*b -closed set which is a contradiction for X-F is a minimal 

rg*b -closed set. Therefore F is a maximal rg*b -open set.  

Theorem 4.21:  

(i) Let F be a maximal rg*b -open set and W be a rg*b -open set. Then F∪W = X or W⊂F.  

(ii) Let F and S be maximal rg*b -open sets. Then F ∪  S = X or F = S.  

Proof: (i) Let F be a maximal rg*b -open set and W be a rg*b -open set. If F∪  W = X, then there is nothing to prove. 

Suppose F ∪  W ≠ X. Then F ⊂F ∪  W. Therefore F∪W = F ⇒ W⊂F.  

(ii) Let F and S be maximal rg*b -open sets. If F∪S ≠ X, then we have F⊂S and S⊂F by (i). Therefore F = S.  

Theorem 4.22: Let F be a maximal rg*b -open set. If x is an element of F, then for any rg*b -open set S containing x, F ∪  

S = X or S ⊂F.  

Proof: Let F be a maximal rg*b -open set and x is an element of F. Suppose ∃  rg*b -open set S containing x such that F 

∪  S ≠ X. Then F⊂ F ∪  S and let F ∪  S is a rg*b -open set. Since F is a rg*b -open set, we have F ∪  S = F. Therefore S⊂ 

F.  

Theorem 4.23: Let Fα, Fβ, Fδ be maximal rg*b -open sets such that Fα ≠ Fβ. If Fα ∩ Fβ⊂ Fδ, then either Fα = Fδ or Fβ = Fδ  

Proof: Given that Fα ∩ Fβ ⊂Fδ. If Fα = Fδ then there is nothing to prove.  

If Fα ≠ Fδ then we have to prove Fβ = Fδ . Now Fβ ∩ Fδ = Fβ ∩ (Fδ ∩ X) = Fβ ∩ (Fδ ∩ (Fα ∪  Fβ)(by thm. 4.21 (ii)) = Fβ ∩ 

((Fδ ∩ Fα) ∪  (Fδ ∩ Fβ)) = (Fβ ∩ Fδ ∩ Fα) ∪  (Fβ ∩ Fδ ∩ Fβ)  

= (Fα ∩ Fβ) ∪  (Fδ ∩ Fβ) (by Fα ∩ Fβ⊂ Fδ) = (Fα ∪  Fδ) ∩ Fβ = X ∩ Fβ (Since Fα and Fδ are maximal rg*b -open sets by 

theorem[4.21](ii), Fα ∪  Fδ = X) = Fβ. That is Fβ ∩ Fδ = Fβ ⇒ Fβ ⊂Fδ Since Fβ and Fδ are maximal rg*b -open sets, we have 

Fβ = Fδ Therefore Fβ = Fδ  

Theorem 4.24: Let Fα, Fβ and Fδ be different maximal rg*b -open sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).  

Proof: Let (Fα ∩ Fβ) ⊂ (Fα ∩ Fδ) ⇒ (Fα ∩ Fβ)  (Fδ ∩ Fβ) ⊂ (Fα ∩ Fδ)  (Fδ ∩ Fβ)  (Fα  Fδ) ∩ Fβ⊂ Fδ ∩ (Fα  Fβ). 

Since by theorem 4.21(ii), Fα  Fδ = X and Fα  Fβ = X  X ∩ Fβ ⊂Fδ ∩ X  Fβ ⊂Fδ From the definition of maximal 

rg*b -open set it follows that Fβ = Fδ, which is a contradiction to the fact that Fα, Fβ and Fδ are different to each other. 

Therefore (Fα ∩ Fβ)  (Fα ∩ Fδ).   

Theorem 4.25: Let F be a maximal rg*b -open set and x be an element of F. Then F =  { S: S is a rg*b -open set 

containing x such that F  S ≠ X}.  

Proof: By theorem 4.23 and fact that F is a rg*b -open set containing x, we have F⊂{ S: S is a rg*b -open set containing x 

such that F  S ≠ X} ⊂F. Therefore we have the result.  

Theorem 4.26: Let F be a proper nonempty cofinite rg*b -open set. Then  (cofinite) maximal rg*b -open set E such that 

F ⊂E.  

Proof: If F is maximal rg*b -open set, we may set E = F. If F is not a maximal rg*b -open set, then  (cofinite) rg*b-open 

set F1 such that F⊂F1 ≠ X. If F1 is a maximal rg*b -open set, we may set E = F1. If F1 is not a maximal rg*b -open set, 

then  a (cofinite) rg*b -open set F2 such that F⊂F1⊂F2 ≠ X. Continuing this process, we have a sequence of rg*b -open, 

F ⊂F1⊂F2⊂... Fk⊂... ... Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal rg*b -

open set E = En for some positive integer n.  

Theorem 4.27: Let F be a maximal rg*b -open set. If x is an element of X-F. Then X-F ⊂E for any  rg*b -open set E 

containing x.  
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Proof: Let F be a maximal rg*b -open set and x in X-F. E  F for any rg*b open set E containing x.Then EF=X by 

theorem 4.21(ii).Therefore X-F⊂ E. 
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